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Abstract. We consider vector-valued functions on a manifold M, taking values in a 
representation space for a group G which also acts on M, and show how such functions can 
be resolved into components which transform irreducibly under G, without performing a 
Clebsch-Gordan decomposition. We also describe the connection with induced representa- 
tions of G. 

1. Introduction 

It is common in physics to have to consider functions which are defined on some space 
subject to a group of transformations, and which take their values in a vector space 
which is also transformed by the same group. The most familiar example is that of 
vector-valued functions of position, transforming by the rotation group; the rotations 
act both on the points of space and on the values of the function. Gel’fand et a1 (1963) 
and Goldberg et a1 (1967) have pointed out that the appropriate functions to use in 
analysing the angular dependence of such vector-valued functions are the spin- 
weighted spherical harmonics, and both sets of authors have used this analysis to find a 
simple form for the general solution of Maxwell’s equations. An alternative procedure 
would be to analyse each component of the vector-valued function by means of 
ordinary spherical harmonics, but since the components are mixed up by a rotation, a 
Clebsch-Gordan decomposition becomes necessary in finding sets of functions which 
transform irreducibly under rotations. 

Gel’fand et a1 (1963) also considered the analysis of functions on the sphere with 
values in a general representation space of the rotation group; this is essentially the 
same as the helicity amplitude analysis of Jacob and Wick (1959) (indeed, ‘spin-s 
spherical harmonics’ would be better called ‘helicity-s spherical harmonics’). 

Crampin and McCarthy (1977) have performed a similar analysis for other groups of 
transformations, obtaining analogues of spin-weighted spherical harmonics and show- 
ing the relation of this analysis to the theory of induced representations. The purpose of 
this paper is to consider the most general situation of this type and show how the most 
general kind of vector-valued function can be analysed into functions which transform 
irreducibly under the group in question, without performing a Clebsch-Gordan decom- 
position. 

33 1 



332 P J McCarthy and A Sudbery 

2. Analysis of general vector-valued functions 

Let M be a manifold (or more generally a HausdoxIT topological space) and G a group of 
transformations acting transitively on M. In most applications G will be a Lie group, but 
we need only assume that it is a locally compact topological group. The action being 
transitive means that every point of M can be taken to any other point by an element of 
G ;  in considering a space on which the action is not transitive, it will be necessary to 
decompose the space into orbits of G. In the case of ordinary three-dimensional space 
and rotations, this means concentrating on spheres, i.e. considering only the angular 
dependence of functions. 

Let V be a vector space on which an irreducible representation Do of G is defined. 
We are concerned with functions 4: M+ V transforming under G in the way described 
in the introduction, with the argument transforming according to the action of G on M 
and the value transforming according to the representation Do. That is, if F denotes the 
space of functions 4:  M +  V, we have a representation U(g): F+ F given by 

[U(g)*l(x) = oO(g)lL(g-’x) ~ E F ,  gEG,   EM. (1) 
We will make the further assumptions that M has a G-invariant measure dx which is 
related to left Haar measure dg on G by 

c , 

where xo is any point of M, P is a subset of M, and P’ G M is the subset {g  : gxo E P}; that 
V is a Hilbert space, and that the representation Do is unitary. Then we can specify F 
more precisely as the space of square-integrable functions, i.e. those for which 

I, W), 4 b ) )  dx <a 

where the angle brackets denote the inner product on V. 

functions on G as follows: given 4 E F, define 4: G + V by 
By choosing a base point X ~ E  M, we can _make functions on M correspond to 

4%) = D0(g-’)4(gXo). (2) 

&gh) = DO(h-’)&g) for all h E H  (3) 

Then 4 is a square-integrable function on G (because Do is unitary, and because of the 
relation between the measures on M and G), and it satisfies the side condition 

where H i s  the little group (or stability group) of xo,  i.e. the subgroup 

H={gE G:  gXo=Xo}. 

Conversely, given any such function 4: G + V ,  we can use the definition (2) to obtain a 
corresponding function 4:  M+ V; the side condition (3) ensures that is well defined, 

Let P be the set of all square-integrable functions 4: G+ V satisfying the side 
condition (3). Then $orresponding to the representation U(g) on F we have a 
representation fi on F given by 

i.e. 
mlt = U(g)ll 

[ fi(g)rll(g’) = DO(g’-’)[ U(g)4l(g’xo) = ~“g’-’)D0(g)4(g-’g’Xo) = qqg-lg’). 
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Thus fi is just the regular representation on g, i.e. it acts on the functions in k by 
transforming the argument by left translation, but without transforming the values of 
the functions. So it is appropriate to analyse each component of a function $E fi like a 
scalar function. We choose a basis {U,} €or V and write $(g) = ZCi(g)ul  ; then each C , ( g )  
is a square-integrable scalar function on G and we can analyse it as 

E,(g) = 1 Tr[A7DU(g-')l= AL,iD",(g) 
U € &  u,mn 

where 6 denotes the set of unitary irreducible representations of G, D"(g)  is the matrix 
representing g in the representation U, and A7 is a matrix of coefficients, of the same 
size as D"(g). 

This expansion of Ei(g)  gives us an expansion of 4 in terms of the functions 

However, these functions do not satisfy the side condition, i.e. they do not correspond 
to functions on M. We can obtain functions which do satisfy the side condition by 
integrating over H, defining 

where dh denotes left Haar measure on H (so that d(hoh) = dh), normalized so that 
jHdh = 1. Then these functions correspond to functions on M, which can be written 
explicitly as 

where yx is a 'Wigner boost', i.e. an arbitrarily chosen group element which takes xo  to 

To show that any function + E F can be expanded in terms of the +&i, note that 
X .  

+(ghxo) is independent of h E H  and so 

J H  a,mni  u,mni 

It follows from the construction of the +zn,i, and can easily be checked directly, that if cr, 
n and i are fixed the functions JI",,,, transform under U according to the irreducible 
representation U oE G. 

The functions +En,l are not independent, since they are obtained by projecting a 
basis for the larger space of all square-integrable functions on G onto the subspace g. 
The effect of the integration over H is to pick out the parts of the matrix elements 
DQ,,(g) which transform under H according to one of the irreducible representations 
contained in the restriction of Do to H ;  this enables us to find a linearly independent 
subset of the functions 4Qmn.i. 
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From the definition of I&,,.~ we have 

J L , i ( g )  = C G p ( g ) + ; n , , i  
P 

where 

4k,z = I, D",,(h)Do(h)ui dh. 

Let {U,} be the basis of the representation space v" of D" with respect to which the 
matrix elements are defined, so that D",(g) = (u,ID"(g)lu,), and suppose this basis is 
adapted to H in the sense that each U, belongs to a subspace E, on which D" acts like 
an irreducible representation T" of H (this is possible since D" is unitary and therefore 
completely reducible when restricted to H). The label U is included to account for 
possible multiplicity of the representation Tu. Then D",(h) = 0 unless U+, belongs to 
the same subspace Ea as U,, and then D&(h) = Tz,(h). We reduce the representation 
Do similarly, decomposing the space V into subspaces v",, on which Do acts like the 
irreducible representation Tu. Then we have 

Do(h)ui = T,Xh)ui if i c a a  
j eaa  

where we write i E au as an abbreviation for ui E v",, (and similarly we will write m E au 
for um E K,). 

It follows that d",,,, = 0 unless U, and U, belong to the same subspace Vza, and then 

4&i= T",n(h)T$h) dh U, 
1 ~ B b  H 

where Gb is the H-invariant subspace of V containing U,. By the orthogonality of the 
matrix elements of the irreducible representations of H, this becomes 

Now consider 

Suppose U, E K, and vi E Gb. Then 4;n,i = 0 unless a = p and p E aa ; thus &,,Jg) = 0 
unless a = p, and then 

where the sum is taken over all basis vectors up E Ka and up = Gb, up and up being 
corresponding vectors in the isomorphic subspaces K, and G b .  Thus the only 
non-zero &,,Jg) are those for which the H-invariant subspace Ka c V' containing U, 
and the H-invariant subspace e b  c V containing ui transform by equivalent irreduc- 
ible representations of H, and for which U, and vi  correspond to each other under the 
isomorphism between K, and v",b which defines the equivalence. Moreover, when 
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this requirement is satisfied the functions are equal for all values of i E ab ; so we need 
only consider the functions 

?-ab(&!) =c D",(g)un " 

the sum being taken over all U, E K5 and L), E v",b. Because the D",(g) are indepen- 
dent functions on G and the L), are independent vectors in V, it can be seen (look hard!) 
that the Pmab(g) are independent functions in I? They correspond to functions 
?-ab: M +  v given by 

Y m a b ( X )  = C D X Y ~ ) D O ( Y X ) L ) , .  
n 

These are our generalized spin-weighted spherical harmonics. They are a basis for the 
space of square-integrable functions 4: M +  V, and for fixed a, a and b the functions 
Y - a b  transform according to the irreducible representation D" of G. We call these 
functions Do-adapted harmonics. 

3. Generalized spin-weighted functions and induced representations 

Ordinary spin-s spherical harmonics are examples of spin-weighted functions on the 
sphere S2-in fact they form a basis for the space of all such functions-and Crampin 
and McCarthy (1977) have shown that spin-weighted functions on S2 are just the 
functions occurring (as the representation space) in the representation of SO(3) induced 
from a representation of the subgroup SO(2). They have also generalized the notion of 
spin-weighted function so as to apply to a homogeneous space of any group G (i.e. a 
space on which G acts transitively) in such a way as to maintain the connection with 
induced representations. In this section we will review the notion of an induced 
representation from a slightly different standpoint from that of Crampin and McCarthy, 
in order to find the relation between the spin-weighted spherical harmonics introduced 
in 0 2 and their generalized spin-weighted functions. We will see that our spin-weighted 
spherical harmonics form a basis for a special kind of spin-weighted function, and a 
simple modification provides a basis for the most general spin-weighted functions. 

Induced representations of groups are exemplified by Wigner's construction of the 
irreducible representation of the PoincarC group; the representation of the PoincarC 
group describing a particle of (real) mass m and spin s is the representation of the 
Lorentz group (which plays the role of G) induced from the spin-s representation of the 
rotation group (which plays the role of H). The role of the manifold M is played by the 
mass shell p 2  = m2,  In the general case, we consider a vector space W, associated with 
each x E M and suppose that a group element that takes x to y also takes W, to W, ; thus 
for each x E A4 and g E G we have an isomorphism T,(g): W, + Wgx. We further 
suppose that 

r g 2 x  ( g X ,  (g2 )  = r x  (g1g2).  

Then the mappings T,(h), where h belongs to the little group H, of x,  form a 
representation of H, on W,. Now all the little groups of the points of M are isomorphic, 
since Hgx = gH,g-', and all the representations of the little groups are equivalent, since 
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so that r, ( g )  intertwines the representations of the little groups of x and gx. Let H be a 
standard model of the little groups H,, so that for each x we have an isomorphism 
K, : H, -. H, and let T" be the representation of H which is equivalent to the representa- 
tions r,. Then if acts on a vector space W, we have isomorphisms A, : W, -. W such 
that 

A To(h)A, = r, ( K ,  (h) )  

(for example, we could take H = H,, ~ , ( h )  = y,hy;', T o  = rxo and A, = r x o ( y x ) ,  where 
xo is a base point in M:nd y, is a Wigner boost). We define a To-weighted function on 
M to be a function +: M-. UxeM W, such that + ( x ) E  W,. In other words, a To- 
weighted function is a cross section of the vector bundle B = U 

To make contact with the original definition of spin-weighted functions (Newma? 
and Penrose 1966), choose a basis u l ( x ) ,  . . . , u, (x )  for ea2h W,. Then a cross section + 
is specified by giving the coordinates cl(x), . . . , c , (x )  of + ( x )  with respect to this basis. 
If we change basis in W, by means of an element of the little group H,, so that the new 
basis vectors are 

w,. 

then the coordinates with respect to the new basis will be 

where k, = ~,(h,)  E H and T:(k,) are the matrix elements of To(k,)  with respect to the 
basis A,u,(x) of W. Thus a To-weighted function on M could be defined as a set of n 
scalar functions which transform under elements of the little groups according to (4). In 
the case of spin-weighted functions on S2, the little group H, is the group of rotations of 
the tangent plane at x, the space W, is a one-dimensional complex space, and the 
representation T o  is that which associates a rotation through an angle a with multiplica- 
tion by e'sa; hence the definition of a spin-weighted function as a complex-valued 
function c (x )  which transforms under rotation of the tangent plane at x through a ( x )  by 

c ' ( x )  = e i s a ( X ) ~ ( ~ ) .  

In what follows we will assume that we have chosen a base point xo E M, and we will 

The representation of G induced by the representation T of H acts on the space of 
identify H with the subgroup Hx, and W with the fibre W,,. 

square-integrable ?O-weighted functions on M, and is defined by 

If we identify ail the fibres W, with W,, by means of Wigner boosts y,, we can replace 
cross sections + by functions +: M-. W, the correspondence being given by 

+ ( x )  = L ( Y 3 & X ) *  

To the induced representation C ( g )  there corresponds a representation U(g) defined 
on the space Fl of square-integrable functions +:M+ V ;  it acts by 
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Thus 

= r~(Y;1)rg-lx(g)r~(Y~-lx)4(g-1x) = z-O[h(g, x ) i w l x )  ( 5 )  

where h(g, x )  = y;lgy,-l,  is a 'Wigner rotation'. 
We now make functions 4 E Fl correspond to functions 6: G + W by defining 

J ( g )  = ~ ~ g - ' Y g x o ) 4 ( g x 0 ) .  (6) 
Then 6 is a square-integrable function on G and satisfies the side condition 

Conversely, given any such function 6: G -* W, we can use the definition (6) to obtain a 
corresponding function 4: M-. W ;  the side condition (7) ensures that 4 is well defined. 

Proceeding as in § 2, we find that the representation U corresponds to a representa- 
tion 0 given by 

Thus the situation is exactly the same as in 0 2, except that the functions 6 take their 
values in a vector space W which carries a representation of the subgroup H only, 
instead of the whole group G. However, in the analysis of the functions 4 in 0 2 we only 
needed to consider the action of the representation Do for elements of the subgroup H 
(in fact the representation U(g) considered in 0 2 is equivalent to the representation 
induced from the restriction of Do to H). Hence that analysis can be taken over to the 
Rresent situation, yielding the conclusion that a basis for square-integrable functions 
$: G + W is given by the functions 

where the sum is taken over all basis vectors w, E W which lie in an invariant subspace 
W,b on which the representation acts like the irreducible representation Tu, and the 
matrix elements D",(g) refer to the basis vectors corresponding to w, in an H-invariant 
subspace Ea of the representation space of D". 

Passing to functions on M by means of the correspondence (4), we obtain basis 
functions 

n 

If the representation To is irreducible of the type T", the label b becomes unnecessary 
and we obtain irreducible a-weighted harmonics Z k a ( x ) .  These form a basis for the 
space of square-integrable a-weighted functions on M, and for k e d  a ,  a and (T they 
transform according to the irreducible representation (T of G under the representation 
(4) induced from To. 

The relation between the irreducible a-weighted harmonics ZL,(x)  and the 
Do-adapted harmonics y - a b  of 8 2 is 

where Lb: w" -* v",b injects the representation space w" on which T ( h )  acts into the 
space v" on which D o ( g )  acts. The factor D0(yx)  is present because the representation 
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induced from the restriction of Do to H is not identical to the representation (l), but is 
equivalent to it; the two representations are intertwined by the mapping $ ( x ) - ,  
Do(yx)4(x).  This relation between the two representations is the same as that between 
Dirac’s and Wigner’s description of spin-; particles, as explained by Joos (1962). 
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